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1. INTRODUCTION

The onset of space-time chaos as well as the nature and the origin of
accompanying fluctuations in coupled systems has attracted a lot of interest
in recent years. (1^3) Though there exist some exact results,K5) most of the
work reported so far concentrates on computer experimental studies of spa-
tially extended systems consisting of a huge number of units. In this paper
we study a system of uncoupled logistic maps which is of interest in its own
right. Here the description of large systems is reduced by the introduction
of only two global variables, the spatial average and its variance. Like in
classical problems of statistical mechanics, i.e., the BBGKY hierarchy,'6' we
derive a set of equations linking the spatial average and and its higher
order variances. However, since the hierarchy does not obey a closed equa-
tion, a nontrivial closure problem arises. In contrast to various classical
problems, straightforward truncation schemes completely fail.(7) Hence, the
principal objective of this paper is to develop closure schemes at the level of
low order variances. Using various approaches—intimately connected with
the classical moment problem18'—higher-order variances are approximated

1 Institute for Experimental Physics, University of Vienna, A-1090 Vienna, Austria; e-mail:
karl.kratky@univie.ac.at.

Irregular Fluctuations in Uncoupled Map Lattices

Karl W. Kratky1 and Karl E. Kurten1

Received December 18, 1996; final September 5, 1997

Analytic approximations for the spatial average and its variance are derived for
a system of N uncoupled chaotic logistic maps with growth parameter r = 4. The
arising nontrivial closure problem is investigated with various techniques related
to the classical moment problem. A Lyapunov-like linear stability analysis is
presented for the transient as well as for the fluctuation regime.

KEY WORDS: Uncoupled logistic maps; chaos; fluctuations; theoretical
models; computer simulations.

0022-4715/98/0200-0749115.00/0 © 1998 Plenum Publishing Corporation

749



by the spatial average and the variance. The system considered is introduced
in Section 2, while in Section 3 we present and analyze the nature of the
fluctuations of all relevant quantities by large scale computer experiments.
Sections 4, 5 and 6 treat the closure problem with various models. In
Section 7 we give a linear stability analysis of our models presented. A sum-
mary and a future aspect follow in Section 8.

The prime notation in (2.4) and (2.5), which will be used further, assumes
the variable to be evaluated at time t + 1, otherwise all variables are sup-
posed to be taken at time t.

Equations (2.4) and (2.5) can be regarded as the first two of a
hierarchy of a set of N equations. However, the set is not closed since the
time evolution of the dk demands the knowledge of the variances up to d2k,
One of the aims of this report is to find reasonable approximations for the
higher variances <c/3> and <rf4> in order to close the set of Eqs. (2.4) and
(2.5).
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2. PROBLEM FORMULATION

We consider a system of N uncoupled identical iterative maps given by
the prescription

The function/(x,) is chosen as the logistic map f ( x i ) = rxi(\ — x t ) , where
r defines the growth parameter. Let's define macroscopic variables, the
time-dependent moments (xky, by

and the time-dependent variances <t/fc> by

Be X(t) := <x> and d(t) ;- {d2}. For the time evolution of the mean X(t)
and for its variance d(t) one finds



If we make a computer simulation with N logistic equations, the inter-
esting quantities are observed in course of time. Starting with an arbitrary
initial state, after a transient phase the (smoothed) actual time-dependent
distribution p(x) of the N ;c,-values produced by the mapping (2.1) comes
close to the equilibrium distribution p0(x) provided that N is sufficiently
large, cf. Fig. 2a in Section 3. In the following, we restrict ourselves to the
case r = 4, where p0(x) is well-known:

< >> < >o and Oj means average using the probability density p(x),
Po(x) and Ap(x), respectively. In particular,
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The (smoothed) fluctuating deviation from p0(x) will be called Ap(x) such
that the actual distribution p(x) can be written as

The normalization condition \10 p(x) dx= 1 then demands

The fluctuating averages of xj and dk can be expresses in terms of the prob-
ability distributions in the following way:



3. FLUCTUATIONS

We first performed large-scale simulations for systems containing up
to 107 equations in order to analyze empirically the time evolution of the
quantities to be approximated. They all fluctuate around their mean values.
The first four deviations Ax, Ad, dd3 and Ad4 with mean value zero are
depicted in Fig. la and Fig. Ib. We observe that Ad'4 is strongly correlated
with Ad, whereas Ad3 is strongly anticorrelated with Ax. The computer
experimental studies reveal clearly that all fluctuations decrease roughly
like \I-JN with increasing system size N. The corresponding probability
distributions are approximatively Gaussian. For N fixed, the absolute
values of Adk generally decrease with increasing k.

The same observations can be made for the time-dependent probability
density p(x) shown in Fig. 2. During the time evolution p(x) fluctuates in
a random-like manner around its asymptotic mean value p0(x). These
observations strongly suggest dynamical behaviour indistinguishable from
a white noise process for sufficiently large N. Therefore we analyze
several single-variable time series of the fluctuations of the first moment
AX= {Ax(Q), Ax(\),..., A x ( T ) } , which contains information of the whole
TV-dimensional space. The idea of the existence of a high-dimensional
chaotic process in the uncoupled system could be supported by implement-
ing the Grassberger-Procaccia algorithm.'9' Our computer experiments
based on embedding dimensions up to eight for large systems of uncoupled
cells show clearly that the correlation exponent v, usually providing a tight
lower bound of the fractal dimension D, is always extremely close to the
embedding dimension. This is to be expected. The initial conditions are
chosen at random such that the dynamical time evolutions of the
individual cells—in absence of interactions—are independent. We infer that
for sufficiently large N, the fluctuations stem from an TV-dimensional
chaotic process. The above observations may be contrasted to highly non-
trivial fluctuations observed in coupled map lattices. There, the mean
square deviations from the spatial average do not tend to vanish icon the
thermodynamic limit.'2'3) Lack to analytical study, their nature and origin
is still a subject of discussions. A rigorous mathematical approch to this
delicate problem of nontrivial fluctuations in coupled and uncoupled maps
with illuminating examples has recently been presented by Bunimovich and
Jiang.'10) Note however that in weakly coupled map lattices also Gaussian
fluctuations decreasing with the system size N have been reported."'3'
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For r = 4 the asymptotic values are
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Fig. 1. Time evolution of the deviations for ( = 30 80 and N = 2]t: (a) zW3 (x) and
Ax ( + ), (b) A/4 ( x ) and Ad ( + ).
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Fig. 2. (a) p(x) at fixed time, (b) Ap(\) at fixed time (c) time evolution of Ap(.\) for fixed
.v = 0.0125, 0.0275 and 0.5025 (from above); /V=2"\
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However, in globally coupled maps'21 also Gaussian fluctuations have been
observed, whose variances saturate at a critical value N = NC.

4. SIMPLE CLOSURE OF THE SET OF TWO EQUATIONS

To simplify our following calculations we transform Eqs. (2.4) and
(2.5) into the deviation representation:
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Fig. 2. ( Continued)

The simplest model would be to set Ad^ and dd4 equal to zero. It turns out,
however, that this approximation is too crude since the iteration of
Eqs. (4.1) and (4.2) explodes in this case (see below). Therefore, a refined
approximation will be used. Due to the observation made in Fig. 1, we
assume that Ad-,, is proportional to Ax and Ad^ is proportional to Ad.
Hence we start with the ansatz



Strongly confirmed by various computer experiments Fig. 1 suggests that
the fluctuating coefficients /?3 and (S4 are close to — | and +|, respectively.
This stands in marked contrast to the simplest model (see above) which
corresponds to (]3=fj4 = 0. Now we assume that /?3 and /?4 are free
parameters (fixed, but arbitrary). Then, the set of Eqs. (4.4), (4.5) has the
fixed point (Ax, Ad] = (0, 0) and linear stability analysis leads to the eigen-
values of the Jacobian ^ = 4(4/?4 - 1) and [j.2 = 0, the non-trivial eigenvalue
/i, having its origin in the second basic equation, i.e., (4.5). Hence, the
asymptotic behaviour of (4.4) and (4.5) does not depend on /?3, and the
fixed point is reached provided that /?4 satisfies ^<A 4 < ^. Note that the
naive choice /?4 = 0 leads to instability. Also the "better" approximation
^A = (Ad4jAd] = «(/4>0/<^)o) = i6, would not stabilize the system. One
can easily show that the dynamics is unstable at the left extreme of its
stability domain.

5. CLOSURE BY DENSITY MODELS WITHOUT
FREE PARAMETERS

Let's now turn to find models for the deviation Ap(x) from the equi-
librium density which allows to determine the deviations dd3 and AdA as
functions of Ax and Ad, see below. We start with the parabolic ansatz:
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Then Eqs. (4.1) and (4.2) result in

The first and third terms are—like p(x)—even functions with respect to
A-= 0.5, while the second term is odd. Given Ax and Ad and using (2.11)
together with condition (2.8) we have a system of three linear equations for
<x0, <*[ and oc2. The solution is

Inserting this in Eqs. (2.12) and (2.13) yields Ad3 and AdA as nonlinear
functions of Ax and Ad. This results in a closure of our basic set of two
equations without any free parameters:



We have also considered further three-coefficient models. The results of all
these approaches are remarkably similar: The leading terms exhibit /)d3

being proportional to Ax, AdA and Ad4 3 being proportional to Ad. In the

822/90/3-4-16
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where the last quantity defined as

closes Eq. (4.2). The leading terms are

A more realistic model for Ap(x) uses p0(x) itself, which is the probability
for a logistic map to have the value x, see Eq. (2.6). Due to its shape, many
of the N equations considered favour ,x-values close to 0 and 1. We assume
that for fixed N the fluctuations Ap(x) around equilibrium are proportional
to ^/p0(x) as a function of .v. The ansatz

fulfills this condition in both ranges close to 0 and 1 where p0(x) becomes
appreciably large. The assumption that Ap is proportional to ^/p0(x] comes
from similar arguments as the l/^/N law for fluctuations. It is supported by
empirical data like in Fig. 2c. There, one can see how the typical variations
of the fluctuations depend on x. Direct calculation of the variances for all
values of .x confirm our assumption.

Similar calculations as above yield for the three coefficients

The leading terms are

This results in



Q = R = 0 reduces to the old ansatz without free parameters, introducing Q
gives one parameter, further expansion to R two parameters. For instance,
a small Q means that the linear term gives the dominant contribution to
the odd part of Ap(x}. If Q is large, the cubic term dominates the linear
one. Calculating the coefficients yields
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first case, the constant of proportionality is negative (typically — j), in the
second case it is positive (typically 5). This is consistent with Fig. 1. The
important quantity Ad4< 3 can in all cases be parametrized as follows:

(/i being —1/28 and —1/1900 in the two cases displayed above. Any of the
other models yields another constant <j>. Inserting (5.16) in (4.2) yields

This will be used in Section 7, where the stability of the solution will be
studied as a function of <f>. Here we will only mention that </> = 0 corre-
sponds to superstability.

6. CLOSURE BY DENSITY MODELS WITH FREE PARAMETERS

Now we generalize our first ansatz to a polynomial of degree four:

In contrast to (5.1) and (5.2) we have an underdetermined system. We
define the ratios Q and R of the odd and even contributions
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The interesting quantities turn out to be

Ad3 only depends on parameter Q, dd4 on both Q and R as expected. It is
interesting to note that /W4 3—the relevant quantity for the basic equations
—only depends on parameter R. The expression is very similar to (5.16).
Indeed, (5.16) and (6.10) may be identified via the relation

Now, (j> can be interpreted in ask new way, i.e., in terms of the parameter R.
Different <t> correspond to different three-coefficient models (see Section 5),
but the connection was not evident. Now, we have a more general model
containing two free parameters. Ad4 3 only depends on R. A wrong Q, i.e.,
a bad estimate of at least one of the odd terms of Ap(x), does not influence
the closure. It is the even contributions which matter. For instance, <j> = 0
(superstability) corresponds to R = —10. That means that in our model the
term of degree 2, see Eq. (6.1), is overcompensated by the term of degree 4.
Knowing R, the even coefficients <x0, a2 and oc4 can be calculated, see (6.3),
(6.5) and (6.7), respectively.

In principle, the situation remains the same if even higher polynomials
are considered. Now let's turn to the most general case, where Ap(x) is
expanded as an infinite power series.
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Ap(x) is split up into the odd and even terms. With the definitions

we get

Again, Ad4i 3 only depends on the even terms and only includes one param-
eter R*. The odd terms play no role at all. Since many combinations of R^
result in the same R*, it is not possible to find out the even coefficients in
a unique way when starting from R*. Looking at the system from an other
point of view, /?* may also be determined via Eq. (6.18) using the com-
puter experimental Ax, Ad and Ad4< 3 at each time step. Then it comes out
as a fluctuating quantity reflecting changes in the shape of the even part of
Ap(x).

1. STABILITY CONSIDERATIONS AND LYAPUNOV-LIKE
EXPONENTS

We come back to the presentation in terms of </>. Then the basic two
equations are

cf. Eq. (4.1) and (5.17). Now </> is again interpreted as a free parameter
(arbitrary, but fixed). Linear stability analysis around equilibrium (Ax =
Ad=0) yields the following two solutions:

(i) eigenvalue fil = l6(/>, eigenvector (Ax, Ad) = (1, — 4(/>)

(ii) the trivial solution, i.e., eigenvaluen2 = 0 witri tne eigenvector (1,0).



The limits of stability are <j> = ± -fa, superstability corresponds to tj> = 0.
In our simplest model (Section 4), we set Ad-,, and Ada, equal to zero, thus
Ad4<3 also being vanishing. Retaining only the linear terms in Eq. (5.16)
corresponds to (j>= — \, which is in the unstable region. The two models
exhibited in Section 5 lie in the stable region, (/> being — ̂  and — y^g,
respectively.

Strictly speaking, the set of Eqs. (7.1), (7.2) is only closed if </> is set
constant. On the other hand, we may determine a fluctuating (/> from
Eq. (5.16) or (5.17) =(7.2) when using the computer experimental Ax, Ad
and Ad^ 3 in the course of time. First we stick to (5.16). Ad4 3 fluctuates as
a function of t even for constant <j>. Only for <j> = — \, Ad4 3 = 0 in the linear
approximation, see above. Figure 3 displays a short part of a computer
simulation for N = 2W, showing the empirical Ad^ , together with the cases
(j>= — -j^, 0, -^ and 0= — |. One can see that the computer experimental
curve is typically in the range of the two theoretical ones with (j> = ± -^.
The empiricial </> is not constant but fluctuating. A closer look on the whole
computer runs reveals that 50% of the empirical values lie inside and out-
side the "band" of \(/>\ = -j^, respectively. Thus the median of \<j>\ is -^, which

Fig. 3. Time evolution of the empirical /M4 , ( + ) and for $ = 0 ( x ), (j>= —13 (*), 0=+- f i i
(O) , 0=- J (full line); # = 2'°
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corresponds to the two extremes of the stability domain (marginal
stability). This is consistent with the fact that the fluctuation of, e.g., dd4<3

remains typically the same during the computer experiment run, neither
increasing nor decreasing exponentially. Since the distribution of <j) turns
out to be symmetric with respect to zero, </> = 0 is the best constant
estimate, if <f> instead of \<j>\ is considered. This is supported by the calcu-
lation of the mean-square deviation of zW4]3(<j6 = 0), Ad$<3(<t> = yg) and
Ad^3(<j) = — yg). It turns out that the mean-square deviation with respect to
the superstable case ((/> = 0) is somewhat (about 50%) smaller compared to
that of the left and right extreme of the stability region. For the stability
consideration, however, |0| is relevant, see also below.

It should be mentioned that the case <j> = — | is also included in Fig. 3.
As shown above, this results in /Id4_ 3 = 0 in the linear approximation.
Indeed, zW4 3 is very close to zero although TV = 210 is not too large.

Now we come back to (7.1) and (7.2). By summing up the square of
the first equation and the second one we get the simple expression
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Calling the quantity in square brackets Au and displaying the equation as
the step from time / to / + 1, it follows that

This linear equation comes out directly and not by the help of a linearization
procedure, resulting in the eigenvalue pl = 16</>. Considering more steps
yields

The geometric mean of the absolute eigenvalues after T steps is
16[nr=To' 1^1 ]1/r- Now we define l(t) in a Lyapunov-like way,

After T steps

where Ar, the arithmetic average of X(t], comes out as



Irregular Fluctuations in Uncoupled Map Lattices 763

Fig. 4. Time series of 4u(t) for t = 1, 2,..., 80; Af = 216.

Fig. 5. Time series of ).T for T= I, 2 80 resulting from the data of Fig. 4; N = 2"\



Figure 4 depicts the time evolution of Au(t) for /V = 216 units, where the
initial conditions have been sampled from a uniform distribution, corre-
sponding to z f w ( O ) = — 55. Computer experiments for higher values of TV as
well as the figure suggest that in the limit N to infinity and also for the
transient domain the equilibrium point Au = 0 can be treated as a fixed-
point attractor. Note that the Lyapunov-like exponent or "convergence-
rate" for a homogeneous initial distribution can be directly estimated from
Fig. 4. Since in the transient regime for (>0 the ratio of \Au(t + 1)| and
\Au(t)\ turns out to be roughly £ (the Lyapunov-like exponent is expected
to be close to In £ < 0 ) .

For large times T, where the fluctuations are dominant, we expect A7.
to converge to zero (marginal stability), since the fluctuations are found in
a small band, whose width decreases according to l/^/N. The convergence
of 1T is displayed in Fig. 5, where we present the experimental 1T inserting
the computer experimental (f>(t) in Eq. (7.8).

8. SUMMARY

For N uncoupled logistic maps with control parameter r = 4, a closure
of the hierarchy of our resulting equations has been achieved by an
approach intimately related to the classical moment problem. For finite N
we approximated the time-dependent fluctuations of the equilibrium prob-
ability density (calculated exactly within the model) in terms of the mean
value and its variance.

We further showed that the fluctuations in our uncoupled system can
be explained in terms of a quasi-fixed point attractor with size dependent
Gaussian-like fluctuations (marginal stability). The formalism could be
applied to other mappings and also be generalized to other values of the
control parameter r, at least where a smooth asymptotic limiting distribu-
tion exists. Note however, that even in this case the asymptotic values of
the moments are in general not known analytically.

Another intriguing aspect would be the derivation of a pure statistical
approach to the problem. Based on the evolution equation for probability
densities such as the Frobenius-Perron equation/11' one might derive the
time evolution of all the variances for (N-> oo). Such a solution charac-
terizing the convergence to the fixed-point attractor would—in the absence
of Gaussian fluctuations—allow a suitable closure of the hierarchy at each
truncation level.
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